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Agenda 

• Conjunction Assessment (CA) introduction 

• Probability of Collision (Pc) computation 

• CA event canonical progression 

• Pc and atmospheric drag 

• JSpOC atmospheric density models 

• Effect of atmospheric density mismodeling on resultant Pc 

• Conjunction drag sensitivity analyses 

• Conclusions 
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NASA Robotic Conjunction Assessment 

Risk Analysis (CARA) 

• CARA provides conjunction 

risk analysis support to all 

operational NASA robotic 

missions 

• Supports ~70 NASA missions 

in different orbit regimes 

– GRACE (350 km) 

– Earth Science Constellation 

(700 km) 

– TDRSS (GEO) 

• As well as a service to other 

agencies 

– NOAA for POES satellites 

– USAF for SBSS and DMSP 

satellites 
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How are Satellite Collision Risks 

Determined/Mitigated? 

• Certain spacecraft are determined to be “protected assets” 

– Constantly evaluated for collision risks with other objects 

• For 7-10 days into the future, expected positions of each protected asset 

and rest of objects in the space catalogue determined 

• “Keep-out volume” box drawn around the protected asset at each time-

step 

• Any satellite that penetrates this keep-out volume is considered a 

possible “conjunctor” 

• Particulars of each conjunction analyzed to determine actual collision risk 

– Usually involves computing probability of collision (Pc), and other 

relevant parameters to give Pc proper context 

• If collision risk considered too great, then mitigation actions pursued 

– Typically a risk mitigation maneuver for the protected asset 
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Conjunction Assessment:  

Process Schematic 
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• Predicted trajectories at time of closest approach (TCA) give the 

minimum “miss distance” (MD) between the two satellites 

– If miss distance less than combined sizes of both satellites, then a 

collision is a real possibility 

• However, uncertainties in estimates of both satellites’ positions affect 

meaningfulness of predicted MD 

– If uncertainties small, then estimated MD reasonable/actionable 

– If uncertainties large, then MD difficult to interpret 

• Concept of “probability of collision” (Pc) thus developed 

– Likelihood that, given the uncertainties in the two satellites’ 

predicted trajectories, actual MD will be less than combined size 

– Satellite position uncertainty represented by covariance matrix, 

propagated to TCA 

Satellite Probability of Collision: 

Conceptual Motivation 
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Satellite Probability of Collision: 

High-Level Calculation Explanation 

• Gray ellipse is combined covariance of both objects 

• Small circle has diameter of combined sizes of both objects 

• Separation of circle and ellipse is nominal miss distance 

• Pc is amount of covariance probability density that falls within circle 

– Computed by integral shown below 

Figure taken from Chan (2008) 
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Conjunction Event Canonical 

Progression 
• Conjunction usually first discovered 7 days before TCA 

– Covariances large, so typically Pc well below maximum 

• As event tracked and updated, changes to state estimate are relatively small, 
but covariance shrinks  

– Because closer to TCA, less uncertainty in projecting positions to TCA 

• Theoretical maximum Pc encountered when 1-sigma covariance size to miss 
distance ratio is 1/√2 

– After this, Pc usually decreases rapidly 

• Behavior shown in graph at right 

– X-axis is covariance size / miss distance 

(related to Mahalanobus distance) 

– Y-axis is log10 (Pc/max(Pc)) 

• Improving position accuracy thus has effect  
on Pc that is difficult to predict 

– More accurate calculation, but Pc could 
increase or decrease 
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• For LEO, atmospheric drag largest source of state estimate error 

• Atmospheric drag magnitude: 

• Ballistic coefficient (β=CDA/M) solved for in OD; included in covariance 

• Errors in ρ can be considerable 

– In general not characterized well and not included in covariance 

– Recent effort to calculate and apply “consider parameter” to 

covariance to compensate for atmospheric density prediction error 

• Errors in ρ become drag acceleration errors, which cause in-track 

(primarily) and radial (secondarily) errors in the orbit 

• While state estimate accuracy desirable, probably more important to 

conjunction assessment to have good state error estimate 

– With this, meaningful Pc can be calculated and enable decisions 

• Emphasis has been on improving models but not their error analyses 

State Estimate Errors: 

Atmospheric Drag 



N AS A R O B O T I C  C AR A  

Jacchia-Bowman-HASDM-2009 

Atmospheric Model 

• Product of AFSPC/A9 and Solar Environment Technologies 

• Built on Jacchia 70 foundation, but with updates/enhancements to 

many of the internal empirical models 

• Employs DCA /HASDM for model debiasing during prediction interval 

• Accepts frequent updates of expanded set of solar indices 

– F10, S10, M10, Y10, both short- and long-term averages 

– Uses 6-day predictions of these solar indices and employs them for 

propagations up to 6 days 

• Also uses 3-hour Ap geomagnetic index 

• Accuracy improvement of 20-45% claimed for 72-hour prediction 

– However, no within-model calculation of estimation error 

• Solar storm modeling module included, using Dst parameter  

(next chart) 
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• Solar storms detected ~10 min after event, but can take 50 hours to 

reach Earth 

– Want to predict effects after detection, without waiting for traditional 

geomagnetic indices to reflect storm presence (“chasing the action”) 

• JBH09 includes Anemomilos solar storm prediction model 

– X-ray magnitude of the flare used to determine mass of ejecta; this 

gives size and severity of storm 

– Flare intensity used as proxy for acceleration; integral gives storm 

velocity and therefore estimate of time of arrival 

– Heliolocation gives storm direction and therefore likelihood of 

geoeffectivenness 

– These data used to adjust neutral density estimates 

• However, no error analysis with model 

JBH09 Solar Storm Predictions 
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• Reprocess historical conjunctions, introducing error into ρ 

– Reduce and increase ρ by up to 100% 

• Observe change in calculated Pc, in two modes 

– Covariance unaltered 

– Covariance altered to account for introduced error 

• Emulates case in which expected error in ρ known 

• Best way to summarize results is by event “color,” which gives severity 

– Red:  Pc > 1E-04; most serious event—remediation usually pursued 

– Yellow:  1E-04 < Pc < 1E-04; can become serious—event monitored 

– Green:  Pc < 1E-07; event essentially ignored 

• Event color changes examined as error in ρ introduced 

• Effect on event stability if amount of ρ error known a priori 

 

Atmospheric Density Error Experiment: 

Effect on Calculated Pc 
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Density Error Effect on Pc: 

Experiment Results 
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• Type I error:  green events that, with error, misclassified as red 

– “False alarm” situation and therefore less worrisome case 

– Percent of affected events relatively small (only a few percent) 

– Compensated covariance produces more deviation, but at least in 

conservative direction 

• Type II error:  red events that, with error, misclassified as green 

– “Missed detection” situation and therefore more worrisome case 

– Compensated covariance pushes many of these to yellow 

• Not ideal, but event still being monitored 

– Uncompensated covariance pushes a much larger number to green 

• Much more problematic, as these events likely to be discarded 

• Conclusion:  density model accuracy matters significantly 

– But knowledge of model error can blunt effect substantially 

 

 

 

Density Error Effect on Pc: 

Experiment Results Interpreted 
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• Previously, in presence of solar storm, drag model error magnitude 

not known but “direction” known 

– Models did not attempt to predict solar storm effects in advance of 

arrival, but solar storm bound to increase drag over quiescent case 

• With solar storm compensation, model error undoubtedly smaller, but 

direction indeterminate—could over- or under-compensate 

• Thus, need to determine solution’s sensitivity to density mismodeling 

• Can do this by systematically varying the ballistic coefficient 

– Density and ballistic coefficient coupled—varying one has similar 

effect to varying the other: 

– If done systematically, can generate an entire trade-space of effects 

of potential density forecasting errors 

 

Event Sensitivity to Solar Storms 
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• Space Weather Trade Space (SWTS) tool developed by CARA to 

evaluate conjunction event’s sensitivity to solar storm drag mismodeling 

• Ballistic coefficient for primary and secondary satellites each varied ± 

half an order of magnitude about the event nominal values 

• Pc calculated for each pair of ballistic coefficient alterations 

• Trade-space plots constructed 

– X-axis gives variation of primary satellite’s ballistic coefficient 

– Y-axis gives variation of secondary satellite’s ballistic coefficient 

– Contour color gives resultant Pc value 

• Pc absolute values not important but contour pattern in relation to 

nominal value 

– Is the response contoured or flat? 

– Is the nominal value at a ridge or off the peak? 

 

The Space Weather Trade Space 



N AS A R O B O T I C  C AR A  

• Pc on or within half an 

order of magnitude of 

highest contour 

• Mis-modelling in drag will 

only cause Pc to decrease 

• Operator can confidently 

make mitigation decision 

using these data because 

worst case already present 

SWTS “On-ridge” Situation 
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• Pc varies less than an 

order of magnitude 

across the full trade 

space 

• Drag mismodelling will 

thus have little to no 

effect on Pc 

• Operator can 

confidently make 

mitigation decision 

using these data 

because Pc unaffected 

by mismodelling 

 

SWTS “Flat” Situation 
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• Pc varies by more than an 

order of magnitude across the 

trade space 

• Nominal Pc is more than half 

an order of magnitude from 

the maximum  

• Density mismodelling could 

either increase or decrease 

the risk of the event 

• The tool does not provide any 

helpful information to the 

Owner/Operator in this case 

SWTS “Off-peak” Situation 
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• Conjunction assessment mission substantially affected by accuracy of 

atmospheric modeling 

– More accurate modeling allows more actionable Pc 

• However, simply knowing expected model error allows error 

compensation and both a correct and more stable Pc 

• Important to pursue both, but accuracy improvements without error 

statement much less useful than if active error modeling included 

Conclusion 


